Use of satellite and modeled soil moisture data for predicting event soil loss at plot scale
نویسندگان
چکیده
The potential of coupling soil moisture and a Universal Soil Loss Equation-based (USLE-based) model for event soil loss estimation at plot scale is carefully investigated at the Masse area, in central Italy. The derived model, named Soil Moisture for Erosion (SM4E), is applied by considering the unavailability of in situ soil moisture measurements, by using the data predicted by a soil water balance model (SWBM) and derived from satellite sensors, i.e., the Advanced SCATterometer (ASCAT). The soil loss estimation accuracy is validated using in situ measurements in which event observations at plot scale are available for the period 2008–2013. The results showed that including soil moisture observations in the event rainfall–runoff erosivity factor of the USLE enhances the capability of the model to account for variations in event soil losses, the soil moisture being an effective alternative to the estimated runoff, in the prediction of the event soil loss at Masse. The agreement between observed and estimated soil losses (through SM4E) is fairly satisfactory with a determination coefficient (log-scale) equal to ∼ 0.35 and a root mean square error (RMSE) of ∼ 2.8 Mg ha. These results are particularly significant for the operational estimation of soil losses. Indeed, currently, soil moisture is a relatively simple measurement at the field scale and remote sensing data are also widely available on a global scale. Through satellite data, there is the potential of applying the SM4E model for large-scale monitoring and quantification of the soil erosion process.
منابع مشابه
Use of satellite and modelled soil moisture data for predicting event soil loss at plot scale
Introduction Conclusions References
متن کاملAnalysis of the Effect of Wind Speed and Soil Moisture on Horizontal Visibility Variations Caused by Dust Event in Arid Regions (Study Region: Southeast of Iran)
Introduction: Increasing or reducing the production of suspended particles depends on the important climatic and terrestrial characteristics of a region. One of the most important climatic factors affecting soil erosion is wind speed, so if the surface winds speed in a region exceeds the threshold of erosion, soil susceptibility to erosion and dust production increases. In contrast, the most im...
متن کاملEstimation of soil moisture using optical, thermal and radar Remote Sensing )Case Study: South of Tehran(
Traditional methods of field measurement of soil moisture in addition to the difficulty, the need for manpower and money and fail to take place on a large scale to be able to show moisture. Therefore, remote sensing has become a widespread use .Landsat 8 satellite data and Sentinel-1 radar satellite from Tehran were provided. 72 soil samples were taken at the same time by satellite passing from...
متن کاملEffect of natural land covers on runoff and soil loss at the hill slope scale
Erosion plots were selected for characterizing the effects of main natural factors on runoff and soil loss in a semi-arid region. These erosion plots with an area of 40 m2 are located in the Kakhk experimental watershed in Gonabad County of Khorasan-e Razave Province in the north-eastern Iran. Data acquired from 2008 to 2015 include slope, aspect, soil texture and land covers (canopy...
متن کاملAnalysis of Large Scale Spatial Variability of Soil Moisture Using a Geostatistical Method
Spatial and temporal soil moisture dynamics are critically needed to improve the parameterization for hydrological and meteorological modeling processes. This study evaluates the statistical spatial structure of large-scale observed and simulated estimates of soil moisture under pre- and post-precipitation event conditions. This large scale variability is a crucial in calibration and validation...
متن کامل